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Abstract
While Graph Neural Networks (GNNs) have recently become the de facto standard for modeling rela-
tional data, they impose a strong assumption on the availability of the node or edge features of the graph.
In many real-world applications, however, features are only partially available; for example, in social
networks, age and gender are available only for a small subset of users. We present a general approach
for handling missing features in graph machine learning applications that is based on minimization of
the Dirichlet energy and leads to a diffusion-type differential equation on the graph. The discretiza-
tion of this equation produces a simple, fast and scalable algorithm which we call Feature Propagation.
We experimentally show that the proposed approach outperforms previous methods on seven common
node-classification benchmarks and can withstand surprisingly high rates of missing features: on aver-
age we observe only around 4% relative accuracy drop when 99% of the features are missing. Moreover,
it takes only 10 seconds to run on a graph with ∼2.5M nodes and ∼123M edges on a single GPU.
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1. Introduction

Graph Neural Networks (GNNs) [1, 2, 3, 4, 5, 6] have been successful on a broad range of
problems and in a variety of fields [7, 8, 9, 10, 11, 12, 13]. GNNs typically operate by a message-
passing mechanism [14, 15], where at each layer, nodes send their feature representations
(“messages”) to their neighbors. The feature representation of each node is initialized to their
original features, and is updated by repeatedly aggregating incoming messages from neighbors.
Being able to combine the topological information with feature information is what distinguishes
GNNs from other purely topological learning approaches such as random walks [16, 17] or label
propagation [18], and arguably what leads to their success.

GNN models typically assume a fully observed feature matrix, where rows represent nodes
and columns feature channels. However, in real-world scenarios, each feature is often only

*Corresponding author.
" erossi@twitter.com (E. Rossi)
© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR Workshop Proceedings (CEUR-WS.org)

mailto:erossi@twitter.com
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


observed for a subset of the nodes. For example, demographic information can be available for
only a small subset of social network users, while content features are generally only present
for the most active users. In a co-purchase network, not all products may have a full description
associated with them. With the rising awareness around digital privacy, data is increasingly
available only upon explicit user consent. In all the above cases, the feature matrix contains
missing values and most existing GNN models cannot be directly applied.

While classic imputation methods [19, 20, 21] can be used to fill the missing values of the
feature matrix, they are unaware of the underlying graph structure. Graph Signal Processing,
a field attempting to generalize classical Fourier analysis to graphs, offers several methods
that reconstruct signals on graphs [22]. However, they do not scale beyond graphs with a few
thousand nodes, making them infeasible for practical applications. More recently, SAT [23],
GCNMF [24] and PaGNN [25] have been proposed to adapt GNNs to the case of missing features.
However, they are not evaluated at high missing features rates (> 90%), which occur in many
real-world scenarios, and where we find them to suffer. Moreover, they are unable to scale to
graphs with more than a few hundred thousand nodes. At the time of writing, PaGNN is the
state-of-the-art method for node classification with missing features.

Contributions We present a general approach for handling missing node features in
graph machine learning tasks. The framework consists of an initial diffusion-based feature
reconstruction step followed by a downstream GNN. The reconstruction step is based on
Dirichlet energy minimization, which leads to a diffusion-type differential equation on the
graph. Discretization of this differential equation leads to a very simple, fast, and scalable
iterative algorithm which we call Feature Propagation (FP). FP outperforms state-of-the-art
methods on six standard node-classification benchmarks and presents the following advantages:

• Theoretically Motivated: FP emerges naturally as the gradient flow minimizing the Dirich-
let energy and can be interpreted as a diffusion equation on the graph with known fea-
tures used as boundary conditions. This contributes to the promising direction of building
continuous-time models on graphs.

• Robust to high rates of missing features: FP can withstand surprisingly high rates of
missing features. In our experiment, we observe on average around 4% relative accuracy
drop when up to 99% of the features are missing. In comparison, GCNMF and PaGNN have
an average drop of 53.33% and 21.25% respectively. This finding has important implications
especially in scenarios where the cost of sampling (observing features on nodes) is high or
sampling is not possible altogether.

• Generic: FP can be combined with any GNN model to solve the downstream task; in contrast,
GCNMF and PaGNN are specific GCN-type models.

• Fast and Scalable: FP takes only around 10 seconds for the reconstruction step on OGBN-
Products (a graph with∼2.5M nodes and∼123M edges) on a single GPU. GCNMF and PaGNN
run out-of-memory on this dataset.
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Figure 1: A diagram illustrating our Feature Propagation framework. On the left, a graph with missing
node features. In the initial reconstruction step, Feature Propagation reconstructs the missing features
by iteratively diffusing the known features in the graph. Subsequently, the graph and the reconstructed
node features are fed into a downstream GNN model, which then produces a prediction.

2. Preliminaries

Let 𝐺 = (𝑉,𝐸) be an undirected graph with 𝑛 × 𝑛 adjacency matrix A and a node feature
vector1 x ∈ R𝑛. The graph Laplacian is an 𝑛×𝑛 positive semi-definite matrix Δ = I−Ã, where
Ã = D− 1

2AD− 1
2 is the normalized adjacency matrix and D = diag(

∑︀
𝑗 𝑎1𝑗 , . . . ,

∑︀
𝑗 𝑎𝑛𝑗) is

the diagonal degree matrix.
Denote by 𝑉𝑘 ⊆ 𝑉 the set of nodes on which the features are known, and by 𝑉𝑢 = 𝑉 𝑐

𝑘 = 𝑉 ∖𝑉𝑘

the unknown ones. We further assume the ordering of the nodes such that we can write

x =

[︂
x𝑘

x𝑢

]︂
A =

[︂
A𝑘𝑘 A𝑘𝑢

A𝑢𝑘 A𝑢𝑢

]︂
Δ =

[︂
Δ𝑘𝑘 Δ𝑘𝑢

Δ𝑢𝑘 Δ𝑢𝑢

]︂
.

Because the graph is undirected, A is symmetric and thus A⊤
𝑘𝑢 = A𝑢𝑘 and Δ⊤

𝑘𝑢 = Δ𝑢𝑘. We
will tacitly assume this in the following discussion.

Graph feature interpolation is the problem of reconstructing the unknown features x𝑢

given the graph structure 𝐺 and the known features x𝑘. The interpolation task requires some
prior on the behavior of the features of the graph, which can be expressed in the form of an
energy function ℓ(x, 𝐺). The most common assumption is feature homophily (i.e., that the
features of every node are similar to those of the neighbours), quantified using a criterion of
smoothness such as the Dirichlet energy. Since in many cases the behavior of the features is not
known, the energy can possibly be learned from the data.

Learning on a graph with missing features is a transductive learning problem (typically
node-wise classification or regression using some GNN architecture) where the structure of the
graph 𝐺 is known while the labels and node features are only partially known on the subsets
𝑉𝑙 and 𝑉𝑘 of nodes, respectively (that might be different and even disjoint). Specifically, we try
to learn a function f(x𝑘, 𝐺) such that 𝑓𝑖 ≈ 𝑦𝑖 for 𝑖 ∈ 𝑉𝑙. Learning with missing features can be
1For convenience, we assume scalar node features. Our derivations apply straightforwardly to the case of 𝑑-
dimensional features represented as an 𝑛× 𝑑 matrix X.



done by a pre-processing step of graph signal interpolation (reconstructing an estimate x̃ of
the full feature vector x from x𝑘) independent of the learning task, followed by the learning
task of f(x̃, 𝐺) on the inferred fully-featured graph. In some settings, we are not interested in
recovering the features per se, but rather ensuring that the output of the function f on these
features is correct – arguably a more ‘forgiving’ setting.

3. Feature Propagation

We assume to be given x𝑘 and attempt to find the missing node features x𝑢 by means of
interpolation that minimizes some energy ℓ(x, 𝐺). In particular, we consider the Dirichlet
energy ℓ(x, 𝐺) = 1

2x
⊤Δx = 1

2

∑︀
𝑖𝑗 𝑎̃𝑖𝑗(𝑥𝑖 − 𝑥𝑗)

2, where 𝑎̃𝑖𝑗 are the individual entries of the
normalized adjacency Ã. The Dirichlet energy is widely used as a smoothness criterion for
functions defined on the nodes of the graph and thus promotes homophily. Functions minimizing
the Dirichlet energy are called harmonic; without boundary conditions, it is minimized by a
constant function.

While the Dirichlet energy is convex and it is possible to derive its minimizer in a closed-
form, as shown in Appendix A.1, its computational complexity makes it unfeasible for graphs
with many nodes with missing features. Instead, we consider the associated gradient flow
ẋ(𝑡) = −∇ℓ(x(𝑡)) as a differential equation with boundary condition x𝑘(𝑡) = x𝑘 whose
solution at the missing nodes, x𝑢 = lim𝑡→∞ x𝑢(𝑡), provides the desired interpolation.

Gradient flow. For the Dirichlet energy,∇xℓ = Δx and the gradient flow takes the form of
the standard isotropic heat diffusion equation on the graph,

ẋ(𝑡) = −Δx(𝑡) (IC) x(0) =

[︂
x𝑘

x𝑢(0)

]︂
(BC) x𝑘(𝑡) = x𝑘

where IC and BC stand for initial conditions and boundary conditions respectively. By
incorporating the boundary conditions, we can compactly express the diffusion equation as[︂

ẋ𝑘(𝑡)
ẋ𝑢(𝑡)

]︂
= −

[︂
0 0

Δ𝑢𝑘 Δ𝑢𝑢

]︂ [︂
x𝑘

x𝑢(𝑡)

]︂
= −

[︂
0

Δ𝑢𝑘x𝑘 +Δ𝑢𝑢x𝑢(𝑡)

]︂
. (1)

As expected, the gradient flow of the observed features is 0, given that they do not change
during the diffusion.

The evolution of the missing features can be regarded as a heat diffusion equation with
a constant heat source Δ𝑢𝑘x𝑘 coming from the boundary (known) nodes. Since the graph
Laplacian matrix is positive semi-definite, the Dirichlet energy ℓ is convex. Its global minimizer
is given by the solution to the closed-form equation ∇x𝑢ℓ = 0 and by rearranging the final
|𝑉𝑢| rows of Equation 1 we get the solution x𝑢 = −Δ−1

𝑢𝑢Δ
⊤
𝑘𝑢x𝑘 . This solution always exists as

Δ𝑢𝑢 is non-singular, by virtue of the following:

Proposition 3.1 (The sub-Laplacian matrix of an undirected connected graph is invertible).
Take any undirected, connected graph with adjacency matrix A ∈ {0, 1}𝑛×𝑛, and its Laplacian
Δ = I − D−1/2AD−1/2, with D being the degree matrix of A. Then, for any principle
sub-matrix L𝑢 ∈ R𝑏×𝑏 of the Laplacian, where 1 ≤ 𝑏 < 𝑛, L𝑢 is invertible.
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Figure 2: Graph Fourier transform magnitudes of the original Cora features (red) and those recon-
structed by FP for varying rates of missing rates (we take the average over feature channels). Since FP
minimizes the Dirichlet energy, it can be interpreted as a low-pass filter, which is stronger for a higher
rate of missing features.

Proof: See Appendix A.1. Also, while the proposition assumes that the graph is connected,
our analysis and method generalize straightforwardly in the case of a disconnected graph as we
can simply apply Feature Propagation to each connected component independently.

However, solving a system of linear equations is computationally expensive (incurring
𝒪(|𝑉𝑢|3) complexity for matrix inversion) and thus intractable for anything but only small
graphs.

Iterative scheme. As an alternative, we can discretize the diffusion equation (1) and solve it
by an iterative numerical scheme. Approximating the temporal derivative as forward difference
with the time variable 𝑡 discretized using a fixed step (𝑡 = ℎ𝑘 for step size ℎ > 0 and 𝑘 =
1, 2, . . .), we obtain the explicit Euler scheme:

x(𝑘+1) = x(𝑘) − ℎ

[︂
0 0

Δ𝑢𝑘 Δ𝑢𝑢

]︂
x(𝑘) =

(︂
I−

[︂
0 0

ℎΔ𝑢𝑘 ℎΔ𝑢𝑢

]︂)︂
x(𝑘) =

[︂
I 0

−ℎΔ𝑢𝑘 I− ℎΔ𝑢𝑢

]︂
x(𝑘)

For the special case of ℎ = 1, we can use the following observation

Ã = I−Δ =

[︂
I 0
0 I

]︂
−
[︂
Δ𝑘𝑘 Δ𝑘𝑢

Δ𝑢𝑘 Δ𝑢𝑢

]︂
=

[︂
I−Δ𝑘𝑘 −Δ𝑘𝑢

−Δ𝑢𝑘 I−Δ𝑢𝑢

]︂
,

to write the iteration formula as

x(𝑘+1) =

[︂
I 0

Ã𝑢𝑘 Ã𝑢𝑢

]︂
x(𝑘). (2)

The Euler scheme is the gradient descent of the Dirichlet energy. Thus, applying the scheme
decreases the Dirichlet energy and results in the features becoming increasingly smooth. Itera-
tion (2) can be interpreted as successive low-pass filtering. Figure 2 depicts the magnitude of



the graph Fourier coefficients of the original and reconstructed features on the Cora dataset,
indicating that the higher the rate of missing features, the stronger the low-pass filtering effect.

The following results shows that the iterative scheme with ℎ = 1 always converges and its
steady state is equal to the closed form solution. Importantly, the solution does not depend on
the initial values x(0)

𝑢 given to the unknown features.

Proposition 3.2. Take any undirected and connected graph with adjacency matrix A ∈
{0, 1}𝑛×𝑛, and normalised Adjacency Ã = D−1/2AD−1/2, with D being the degree matrix
of A. Let x = x(0) ∈ R𝑛 be the initial feature vector and define the following recursive relation

x(𝑘) =

[︂
I 0

Ã𝑢𝑘 Ã𝑢𝑢

]︂
x(𝑘−1).

Then this recursion converges and the steady state is given to be

lim
𝑛→∞

x(𝑛) =

[︂
x𝑘

−Δ−1
𝑘𝑘 Ã𝑢𝑘x𝑘

]︂
.

Proof: See Appendix A.2.

Algorithm 1 Feature Propagation

1: Input: feature vector x, diffusion matrix Ã
2: y← x
3: while x has not converged do
4: x← Ãx ◁ Propagate features
5: x𝑘 ← y𝑘 ◁ Reset known features
6: end while

Feature Propagation Algorithm. We can
notice that the update in Equation 2 is equiva-
lent to first multiplying the feature vectorx by
the original diffusion matrix Ã, and then re-
setting the known features to their true value.
This gives us Algorithm 1, an extremely sim-
ple and scalable iterative algorithm to recon-
struct the missing features on a graph, which
we refer to as Feature Propagation (FP). While
x𝑢 can be initialized to any value, in practice
we initialize x𝑢 to zero and find 40 iterations
to be enough to provide convergence for all datasets we experimented on. At each iteration, the
diffusion occurs from the nodes with known features to the nodes with unknown features as
well as among the nodes with unknown features.

Extension to Vector-Valued Features. Algorithm 1 extends seamlessly to vector-valued
features by simply replacing the feature vector x with a 𝑛× 𝑑 feature matrix X, where 𝑑 is the
number of features. Multiplying the diffusion matrix A by the feature matrix X diffuses each
feature channel independently. Interestingly, it would not be trivial to extend Equation 2 to
vector-valued features without noticing its equivalence with Algorithm 1, as each node could
have different missing features, leading to different sub-matrices Ã𝑢𝑘 and Ã𝑢𝑢 for each feature
channel.



Learning. One significant advantage of FP is that it can be easily combined with any graph
learning model to generate predictions for the downstream task. Moreover, FP is not aimed at
merely reconstructing the node features. Instead, by only reconstructing the lower frequency
components of the signal, it is by design very well suited to be combined with GNNs, which are
known to mainly leverage these lower frequency components [26]. Our approach is generic
and can be used for any graph-related task for missing features, such as node classification, link
prediction and graph classification. In this paper, we focus on node classification.

Oversmoothing. Figure 2 shows that the more features are missing, the smoother the re-
construction produced by FP is. Despite this, FP does not suffer from oversmoothing [27], a
term used when node representations converge to similar values. Oversmoothing is caused
by repeated diffusion and occurs widely when stacking more than a few layers of the most
popular GNNs such as GCN [3], GAT [5] or SGC [26]. However, the boundary conditions in
the Feature Propagation diffusion equation prevent the reconstructed features from becoming
overly smooth, even when using an extremely high number of diffusion steps. This has also
been studied by CGNN [28] and GRAND++ [29], which require soft boundary conditions in
the form of a source term to prevent oversmoothing, although not in the context of missing
features.

4. Related Work

Label Propagation. The proposed algorithm bears some similarity with Label Propaga-
tion [18] (LP), which predicts a class for each node by propagating the known labels in the
graph. Differently from our setting of diffusion of continuous node features, they deal with
discrete label classes directly, resulting in a different diffusion operator. However, the key
difference between them lies in how they are used. Importantly, LP is used to directly perform
node classification, taking into account only the graph structure and being unaware of node
features. On the other hand, FP is used to reconstruct missing features, which are then fed into
a downstream GNN classifier. FP allows a GNN model to effectively combine features and graph
structures, even when most of the features are missing. Our experiments show that FP+GNN
always outperforms LP, even in cases of extremely high rates of missing features, suggesting
the effectiveness of FP. Also, the derived scheme is a special case of Neural Graph PDEs [30],
which are in turn related to the iterative scheme presented in [31].

Matrix completion. Several optimization-based approaches [32, 33] as well as learning-
based approaches [19, 20, 21] have been proposed to solve the matrix completion problem.
However, they are unaware of the underlying graph structure. Graph matrix completion [34,
35, 36, 37] extends the above approaches to make use of an underlying graph. Similarly, Graph
Signal Processing offers several methods to interpolate signals on graphs. [22] prove the
necessary conditions for a graph signal to be recovered perfectly, and provide a corresponding
algorithm. However, due to the optimisation problems involved, most above approaches are too
computationally intensive and cannot scale to graphs with more than ∼1,000 nodes. Moreover,



the goal of all above approaches is to reconstruct the missing entries of the matrix, rather than
solving a downstream task.

Extending GNNs to missing node features. SAT [23] consists of a Transformer-like model
for feature reconstruction and a GNN model to solve the downstream task. GCNMF [24] adapts
GCN [3] to the case of missing node features by representing the missing data with a Gaussian
mixture model. PaGNN [25] is a GCN-like model which uses a partial message-passing scheme
to only propagate observed features. While showing a reasonable performance for low rates of
missing features, these methods suffer in regimes of high rates of missing features, and do not
scale to large graphs.

Other related GNN works. Several papers investigate how to augment GNNs when no
node features are available [38], as well as investigating the performance of GNNs with random
features [39, 40]. Dirichlet energy minimization has been widely used as a regularizer in several
graph-related tasks [41, 31, 42]. Discretizion of continuous diffusion on graphs has already
been explored in [30] and [43]. Propagation on the graph has also been studied as a solution
to the different problem of node regression on multi-relational graphs [44]. Other methods
have investigated propagating node features [26, 45, 46], however not in the scenario of missing
features. The boundary conditions given by the available features in FP’s diffusion equation
(enforced by resetting the known feature after each iteration in the algorithm) is what makes it
different from other propagation approaches and makes it an effective solution to the missing
features problem. While [26, 45, 46] assume to observe all features, and then modify all features,
FP assumes to observe only a subset of the features and modifies only the unobserved ones.

5. Experiments and Discussion

Datasets. We evaluate on the task of node classification on several benchmark datasets: Cora,
Citeseer and PubMed [47], Amazon-Computers, Amazon-Photo [48] and OGBN-Arxiv [49]. To
test the scalability of our method, we also test it on OGBN-Products (2,449,029 nodes, 123,718,280
edges). We report dataset statistics in table 3 (Appendix).

Baselines. We compare to two strong feature-agnostic baselines: Label Propagation [18],
which only makes use of the graph structure by propagating labels on the graph, and Graph
Positional Encodings [50], which consist in computing the top 𝑘 eigenvectors of the Laplacian
matrix and treating them as node features in input to a GNN. We additionally compare to feature-
imputation methods that are graph-agnostic, such as setting the missing features to 0 (Zero), a
random value from a standard Gaussian (Random), or the global mean of that feature over the
graph (Global Mean) 2. We also compare to a simple graph-based imputation baseline, which
sets a missing feature to the mean (of that same feature) over the neighbors of a node (Neighbor
Mean). We additionally experiment with MGCNN [36], a geometric graph completion method
which learns how to reconstruct the missing features by making use of the observed features

2If a feature is not observed for any of the node’s neighbors, we set it to zero.
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Figure 3: Test accuracy for varying rate of missing features on six common node-classification bench-
marks. For methods that require a downstream GNNs, a 2-layer GCN [3] is used. On OGBN-Arxiv,
GCNMF goes out-of-memory and is not reported.

and the graph structure. For all the above baselines, as well as for our Feature Propagation, we
experiment with both GCN [3] and GraphSage with mean aggregator [51] as downstream GNNs.
We also compare to recently state-of-the-art methods for learning in the missing features setting
(GCNMF [24] and PaGNN [25]). For GCNMF we use the publicly available code.3 We could not
find publicly available code for PaGNN so use our own implementation for this comparison.
We do not compare to other commonly used imputation based methods such as VAE [21] or
GAIN [20], nor to the Transformer-based method SAT [23], as they have previously been shown
to consistently underperform GCNMF and PaGNN [24, 25].

Experimental Setup. We report the mean and standard error of the test accuracy, computed
over 10 runs, in all experiments. Each run has a different train/validation/test split (apart from
OGBN datasets where we use the provided splits) and mask of missing features4. The splits are
generated at random by assigning 20 nodes per class to the training set, 1500 nodes in total to the
validation set and the rest to the test set, similar to [52]. For a fair comparison, we use the same
standard hyperparameters for all methods across all experiments. We train using the Adam [53]
optimizer with a learning rate of 0.005 for a maximum of 10000 epochs, combined with early
stopping with a patience of 200. Downstream GNN models (as well as GCNMF and PaGNN)
use 2 layers with a hidden dimension of 64 and a dropout rate of 0.5 for all datasets, apart from
OGBN datasets where 3 layers and a hidden dimension of 256 are used. For OGBN-Arxiv we
also employ the Jumping Knowledge scheme [54] with max aggregation. Feature Propagation
uses 40 iterations to diffuse the features, as we found this to be enough to reach convergence
on all datasets. We want to emphasize that we did not perform any hyperparameter tuning,

3https://github.com/marblet/GCNmf
4Each entry of the feature matrix is independently missing with a probability equal to the missing rate.



and FP proved to perform consistently with any reasonable choice of hyperparameters. We use
neighbor sampling [51] when training on OGBN-Products. All experiments are conducted on
an AWS p3.16xlarge machine with 8 NVIDIA V100 GPUs with 16GB of memory each, and took
around 4 GPU days in total to perform.

Dataset Full Features 50.0% Missing 90.0% Missing 99.0% Missing

Cora 80.39% 79.70%(-0.86%) 79.77%(-0.77%) 78.22%(-2.70%)
CiteSeer 67.48% 65.74%(-2.57%) 65.57%(-2.82%) 65.40%(-3.08%)
PubMed 77.36% 76.68%(-0.89%) 75.85%(-1.96%) 74.29%(-3.97%)
Photo 91.73% 91.29%(-0.48%) 89.48%(-2.46%) 87.73%(-4.36%)
Computers 85.65% 84.77%(-1.04%) 82.71%(-3.43%) 80.94%(-5.51%)
OGBN-Arxiv 72.22% 71.42%(-1.10%) 70.47%(-2.43%) 69.09%(-4.33%)
OGBN-Products 78.70% 77.16%(-1.96%) 75.94%(-3.51%) 74.94%(-4.78%)
Average 79.08% 78.11%(-1.27%) 77.11%(-2.48%) 75.80%(-4.10%)

Table 1
Performance of Feature Propagation (combined with a GCN model) for 50%, 90% and 99% of missing
features, and relative drop compared to the performance of the same model when all features are
present. On average, our method loses only 2.50% of relative accuracy with 90% of missing features,
and 4.12% with 99% of missing features.

Dataset GCNMF PaGNN Label Prop. Pos. Enc. FP (Ours)

Cora 34.54±2.07 58.03±0.57 74.68±0.36 76.33±0.26 78.22±0.32
CiteSeer 30.65±1.12 46.02±0.58 64.60±0.40 65.87±0.37 65.40±0.54
PubMed 39.80±0.25 54.25±0.70 73.81±0.56 73.70±0.29 74.29±0.55
Photo 29.64±2.78 85.41±0.28 83.45±0.94 83.45±0.26 87.73±0.27
Computers 30.74±1.95 77.91±0.33 74.48±0.61 75.77±0.47 80.94±0.37
OGBN-Arxiv OOM 53.98±0.08 67.56±0.00 65.08±0.04 69.09±0.06
OGBN-Products OOM OOM 74.42±0.00 OOM 74.94±0.07

Table 2
Performance of GCNMF, PaGNN and FP(+GCN) with 99% of features missing, as well as Label Propaga-
tion and Positional Encodings (which are feature-agnostic). GCNMF and PaGNN perform respectively
58.33% and 21.25% worse in terms of relative accuracy in this scenario compared to when all the features
are present. In comparison, FP has only a 4.12% drop.

Node Classification Results. Figure 3 shows the results for different rates of missing features
(x-axis), when using GCN as a downstream GNN (results with GraphSAGE are reported in
Figure 6 of the Appendix). FP matches or outperforms other methods in all scenarios. Both
GCNMF and PaGNN are consistently outperformed by the simple Neighbor Mean baseline. This
is not completely unexpected, as Neighbor Mean can be seen as a first-order approximation
of Feature Propagation, where only one step of propagation is performed (and with a slightly
different normalization of the diffusion operator). We elaborate on the relation between Neighbor
Mean and Feature Propagation as well as on the results of the other baselines in Section A.4 of the



Appendix. Interestingly, most methods perform extremely well up to 50% of missing features,
suggesting that in general node features are redundant, as replacing half of them with zeros
(Zero baseline) has little effect on the performance. The gap between methods opens up from
around 60% of missing features, and is particularly large for extremely high rates of missing
features (90% or 99%): FP is the only feature-aware method which is robust to these high
rates on all datasets (see Table 2). Moreover, FP outperforms or matches Label Propagation and
Positional Encodings on all datasets, even in the extreme case of 99% missing features. On some
datasets, such as Cora, Photo, and Computers, the gap is especially significant. We conclude
that reconstructing the missing features using FP is indeed useful for the downstream task.
We highlight the surprising results that, on average, FP with 99% missing features performs
only 4.12% worse (in relative accuracy terms) than the same GNN model used with no missing
features, compared to 58.33% and 21.25% worse for GCNMF and PaGNN respectively.

FP (Ours) PaGNN GCNMF
0

5

10

15

20

25

R
un

ni
ng

T
im

e
(s

)

7.89

24.12 23.87

Computers

FP (Ours) PaGNN GCNMF
0

50

100

150

200

250

R
un

ni
ng

T
im

e
(s

)

98.45

271.85

OOM

OGBN-Arxiv

Figure 4: Run-time (in seconds) of FP, PaGNN and GCNMF. FP
is 3x faster than both other methods. GCNMF goes
out-of-memory (OOM) on OGBN-Arxiv.

Run-time analysis. Fea-
ture Propagation scales to
extremely large graphs, as
it only consists of repeated
sparse-to-dense matrix multi-
plications. Moreover, it can be
regarded as a pre-processing
step, and performed only
once, separately from training.
In Figure 4 we compare the
run-time to complete the
training of the model for FP,
PaGNN and GCNMF. The time
for FP includes both the feature propagation step to reconstruct the missing features, as well as
training of a downstream GCN model. FP is around 3x faster than PaGNN and GCNMF. The
propagation step of FP takes only a fraction of the total running time, and the vast majority of
the time is spent in training of the donwstream model. The feature propagation step takes only
∼0.6s for Computers, ∼0.8s for OGBN-Arxiv and ∼10.5s for OGBN-Products using a single
GPU. Both PaGNN and GCNMF go out-of-memory on OGBN-Products.

When does Feature Propagation work? Since FP can be interpreted as a low-pass filter
that smoothes the features on the graph, we expect it to be suitable in the case of homophilic
graph data (where neighbors tend to have similar attributes), and, conversely, to suffer in
scenarios of low homophily. To verify this, we experiment on the synthetic dataset from [55],
which consists of 10 graphs with different levels of homophily. Figure 5 confirms our hypothesis:
when the homophily is high, Feature Propagation with 99% of features missing performs
similarly to the case when all the features are known. As the homophily decreases, the gap
between the two widens to become extremely large in the case of zero homophily. In such
scenarios, FP is only slightly better than setting the missing features to zero (Zero baseline).
This observation calls for a different kind of non-homogeneous diffusion dependent on the
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Figure 5: Test accuracy on the synthetic datasets from [55] with different levels of homophily. We use
GraphSage as downstream model as it is preferable to GCN on low homophily data [56].

features that can potentially be made learnable for low-homophily data. We leave this as future
work.

6. Conclusion

We have introduced a novel approach for handling missing node features in graph-learning
tasks. Our Feature Propagation model can be directly derived from energy minimization, and
can be implemented as an efficient iterative algorithm where the features are multiplied by a
diffusion matrix, before resetting the known features to their original value. Experiments on a
number of datasets suggest that FP can reconstruct the missing features in a way that is useful
for the downstream task, even when 99% of the features are missing. FP outperforms recently
proposed methods by a significant margin on common benchmarks, while also being extremely
scalable.

Limitations. While our method is designed for homophilic graphs, a more general learnable
diffusion could be adopted to perform well in low homophily scenarios, as discussed in Section 5.
Feature Propagation is designed for graphs with only one node and edge type, however it could
be extended to heterogenous graphs by having separate diffusions for different types of edges
and nodes. Finally, Feature Propagation treats feature channels independently. To account for
dependencies, diffusion with channel mixing should be used.

Societal Impact. Our work is aimed at improving the performance of Graph Neural Networks.
While we believe that nothing in our work raises specific ethical concerns, the recent broad
adoption of GNNs in industrial applications opens the possibility to the misuse of such methods
with potentially detrimental societal impact.
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A. Appendix

A.1. Closed-Form Solution for Harmonic Interpolation

Given the Dirichlet energy ℓ(x, 𝐺) = 1
2x

⊤Δx, we want to solve for missing features x𝑢 =
𝑎𝑟𝑔𝑚𝑖𝑛x𝑢ℓ, leading to the optimality condition∇x𝑢ℓ = 0. From Eq. 1 we find∇xuℓ = 0 to be
the solution of Δ𝑢𝑘x𝑘 +Δ𝑢𝑢x𝑢 = 0. The unique solution to this system of linear equations
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is x𝑢 = −Δ−1
𝑢𝑢Δ𝑢𝑘x𝑘. We show this solution always exists by proving Δ𝑢𝑢 is non-singular

(Proposition 3.1). The proof of this result follows from the following Lemma.
Take any undirected and connected graph with adjacency matrix A ∈ {0, 1}𝑛×𝑛, and

normalised Adjacency Ã = D−1/2AD−1/2, with D being the degree matrix of 𝐴. Let Ã𝑢𝑢

be the bottom right submatrix of Ã where 1 ≤ 𝑏 < 𝑛. Then 𝜌(Ã𝑢𝑢) < 1 where 𝜌(·) denotes
spectral radius. Define

Ã𝑢𝑝 =

[︂
0𝑢 0𝑢𝑘
0𝑘𝑢 Ã𝑢𝑢

]︂
,

to be the matrix equal to Ã𝑢𝑢 in the lower right 𝑏× 𝑏 sub-matrix and padded with zero entries
elsewhere. Clearly Ã𝑢𝑝 ≤ Ã elementwise and Ã𝑢𝑝 ̸= Ã. Furthermore, Ã𝑢𝑝 + Ã represents an
adjacency matrix of some strongly connected graph and is therefore irreducible [57, Theorem
2.2.7]. These observations allow us to deduce that 𝜌(Ã𝑢𝑝) < 𝜌(Ã) [57, Corollary 2.1.5]. Note
that 𝜌(Ã𝑢𝑝) = 𝜌(Ã𝑢𝑢) as Ã𝑢𝑝 and Ã𝑢𝑢 share the same non-zero eigenvalues. Furthermore,
𝜌(Ã) ≤ 1 as we can write Ã = I −Δ and Δ is known to have eigenvalues in the range
[0, 2] [58]. Combining these inequalities gives the result 𝜌(Ã𝑢𝑢) = 𝜌(Ã𝑢𝑝) < 𝜌(Ã) ≤ 1.

Proposition A.1 (The sub-Laplacian matrix of a undirected connected graph is invertible).
Take any undirected, connected graph with adjacency matrix A ∈ {0, 1}𝑛×𝑛, and its Laplacian
Δ = I − D−1/2AD−1/2, with D being the degree matrix of A. Then, for any principle
sub-matrix L𝑢 ∈ R𝑏×𝑏 of the Laplacian, where 1 ≤ 𝑏 < 𝑛, 𝐿𝑢 is invertible.

To prove Δ𝑢𝑢 is non-singular it is enough to show 0 is not an eigenvalue. Note that Δ𝑢𝑢 =
I− Ã𝑢𝑢 so 0 is not an eigenvalue if and only if Ã𝑢𝑢 does not have an eigenvalue equal to 1,
which follows from Lemma A.1.

A.2. Closed-Form Solution for the Euler scheme

Proposition A.2. Take any undirected and connected graph with adjacency matrix A ∈
{0, 1}𝑛×𝑛, and normalised Adjacency Ã = D−1/2AD−1/2, with D being the degree matrix
of A. Let x = x(0) ∈ R𝑛 be the initial feature vector and define the following recursive relation

x(𝑘) =

[︂
I 0

Ã𝑢𝑘 Ã𝑢𝑢

]︂
x(𝑘−1).

Then this recursion converges and the steady state is given to be

lim
𝑛→∞

x(𝑛) =

[︂
x𝑘

−Δ−1
𝑘𝑘 Ã𝑢𝑘x𝑘

]︂
.

The recursive relation can be written in the following form[︃
x
(𝑘)
𝑘

x
(𝑘)
𝑢

]︃
=

[︂
I𝑙 0𝑘𝑢

Ã𝑢𝑘 Ã𝑢𝑢

]︂[︃
x
(𝑘−1)
𝑘

x
(𝑘−1)
𝑢

]︃
=

[︃
x
(𝑘−1)
𝑘

Ã𝑢𝑘x
(𝑘−1)
𝑘 + Ã𝑢𝑢x

(𝑘−1)
𝑢

]︃
.

The first 𝑙 rows remain the same so we can write x
(𝑘)
𝑘 = x

(𝑘−1)
𝑘 = x𝑘 and consider just the

convergence of the last 𝑢 rows

x(𝑘−1)
𝑢 = Ã𝑢𝑘x𝑘 + Ã𝑢𝑢x

(𝑘−1)
𝑢 .



Dataset Nodes Edges Features Classes

Cora 2,485 5,069 1,433 7
CiteSeer 2,120 3,679 3,703 6
PubMed 19,717 44,324 500 3
Photo 7,487 119,043 745 8
Computers 13,381 245,778 767 10
OGBN-Arxiv 169,343 1,166,243 128 40
OGBN-Products 2,449,029 123,718,280 100 47

Table 3
Dataset statistics.
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Figure 6: Test accuracy for varying rate of missing features on six common node-classification bench-
marks. For methods that require a downstream GNNs, a 2-layer GraphSAGE [51] is used. On OGBN-
Arxiv, GCNMF goes out-of-memory and is not reported.

We can look at the stationary behaviour by unrolling this recursion and taking the limit to find
stationary state

lim
𝑛→∞

x(𝑛)
𝑢 = lim

𝑛→∞
Ã

𝑛
𝑢𝑢x

(0)
𝑢 +

(︃
𝑛∑︁

𝑖=1

Ã
(𝑖−1)
𝑢𝑢

)︃
Ã𝑢𝑘x𝑘.

Using Lemma A.1 we find lim𝑛→∞ Ã
𝑛
𝑢𝑢x

(0)
𝑢 = 0 and the geometric series converges giving

us the following limit

lim
𝑛→∞

x(𝑛)
𝑢 =

(︁
I𝑢 − Ã𝑢𝑢

)︁−1
Ã𝑢𝑘x𝑘 = −Δ−1

𝑘𝑘 Ã𝑢𝑘x𝑘.



A.3. Baselines’ Implementation and Tuning

Label Propagation We use the label propagation implementation provided in Pytorch-
Geometric [59]. Since the method is quite sensitive to the value of the 𝛼 hyperpa-
rameter, we perform a gridsearch separately on each dataset over the following values:
[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99].

Positional Encodings We compute the laplacian eigenvectors using SciPy [60] sparse eigen-
vectors routines. We use the top twenty eigenvectors as positional encodings.

MGCNN We re-implement MGCNN [36] in Pytorch by taking inspiration from the authors’
public TensorFlow code 5. For simplicity, we use the version of the model with only graph
convolutional layers and without an LSTM. For the matrix completion training process, we split
the observed features into 50% input data, 40% training targets and 10% validation data. Once
the MGCNN model is trained, we feed it the matrix with all the observed features to predict the
whole feature matrix. This reconstructed features matrix is then used as input for a downstream
GNN (as for the feature-imputation baselines).

A.4. Discussion Over Baselines’ Performance

Neighborhood Averaging As for some intuition to why the simple Neighborhood Averaging
performs competitively, let us assume to have a single feature channel and this feature to be
homophilous over the graph. When a node has enough neighbors, the average of their features
is a good estimate for the feature of the given node. However, as the rate of missing features
increases, the feature may be present for only a few neighbors (or none at all), causing the
estimate to have a higher variance. On the other hand, Feature Propagation allows information
to travel longer distances in the graph by repeatedly multiplying by the diffusion matrix. Even
if we do not observe the feature for any of a node’s neighbors, it is still possible to estimate
it from nodes further away in the graph. This can be observed empirically: the gap between
Neighborhood Averaging and Feature Propagation becomes increasingly significant for higher
rates of missing features.

Zero vs Random In models such as GCN and GraphSage, where node embeddings are
computed as (weighted) average of neighbors embeddings, the effect of the Zero baseline is
simply to reduce the norm of the average embeddings of all nodes (since all nodes have the
same expected proportion of neighbors with missing features). On the other hand, the Random
baseline corrupts this weighted average. More generally, while for a GNN model it could be
relatively easy to learn to ignore features set to zero, and only focus on known (non-zero)
features, it would be basically impossible for the model to do the same when setting the missing
features to a random value.

However, we find Random to perform better than Zero when all features are missing. This is
in line with findings in the literature [39, 40], where Random features have been shown to work
well in conjunction with GNNs as they act as signatures for the nodes. On the other hand, if all

5https://github.com/fmonti/mgcnn



nodes have all zero vectors, it becomes basically impossible to distinguish them. After applying
a GNN, all nodes will still have very similar embeddings and the task performance will be close
to a random guess.
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